LOFAR Constraints on Weakly Accreting Black Hole Jets

Sera Markoff

Astronomical Institute “A. Pannekoek”
University of Amsterdam
Jets appear in many astronomical objects

SUPERMASSIVE BLACK HOLES
- Virgo A (M87)

 STELLAR-MASS BLACK HOLES
- GRS 1915+105

FORMING STARS
- HH 30

DYING STARS
- PN M2-9
- Cas A

DEAD STARS
- R AQUARIII
- CRAB PULSAR
- SS 433

GRB
Fundamental Questions

- Why do jets form? What are the conditions near the black hole leading to jet creation, collimation etc.? Does the black hole play a special role or could it be anything in there?

- Jet structure/geometry/bulk velocity

- Jet intrinsic physics: Matter (e⁻p vs e⁺e⁻) vs. Poynting flux dominated?

- Is BH physics generic? If yes, should scale predictably between stellar/galactic systems
Accreting BHs with Jets - Mass (Size) Scales

QUASAR (AGN) MICROQUASAR (XRB)

(Mirabel et al. 92,98)
Comparing accretion across the mass scale

QUASAR (AGN) MICROQUASAR (XRB)

10^{4-5} yrs! 1 day

(Mirabel et al. 92, 98)
XRB accretion states

(Homan & Belloni 2004)
(BH) XRB Accretion States

Soft State
- (no jets)
- $\approx L_{\text{Edd}}$
- ~ 1 keV

Hard State
- (jets)
- $\ll L_{\text{Edd}}$
- ~ 100 keV
Fundamental plane of BH accretion!

\[\text{Lg} \ L_x \text{ erg/s} \]

\[\text{Lg} \ L_R \text{ erg/s} \]

Falcke, König & Markofff 2004
Merloni, Heinz & d’Mattia 2003
Fundamental plane of BH accretion!

Falcke, Kording & Markoff 2004
Merloni, Heinz & di Matteo 2003
Fundamental plane of BH accretion!

Observed

Mass “corrected”

Jet structure/plasma flow

- Measuring lags between frequencies, and amplitude/shape decay/evolution of flare events
- Gives information about plasma velocities and internal physics, e.g., Cyg X-1: (Wilms et al. 2007)
Model Components

(Markoff, Nowak & Wilms 2005)
Radio/Xray only: Cyg X-1 spectrum

Jet model $\chi^2 = 1.04$

(Markoff & Nowak 2004; Markoff, Nowak & Wilms 2005)
Radio/Xray only: Cyg X-1 spectrum

Jet model $\chi^2 = 1.04$

(Markoff & Nowak 2004; Markoff, Nowak & Wilms 2005)
New constraints from IR/Optical II: A0620-00

(Gallo et al. 2007)
M81* simultaneous campaign

All observations

(Markoff et al. 2007)
“Multimessenger” = multiwavelength

★ If protons accelerated in the jets, additional contribution from hadronic interactions

\[pp \text{ or } p\gamma \rightarrow \pi^0 \rightarrow 2\gamma \ (\sim 70 \text{ MeV CM frame}) \]

\[\rightarrow \pi^{+/−} \rightarrow \mu^{+/−} + \nu_\mu \]

\[\rightarrow e^{+/−} + \nu_e + \nu_\mu \]

☛ Submitted proposals to trigger MAGIC and IceCube with first bright LOFAR transients, as well as mutual monitoring of known sources

☛ Will directly address questions about particle acceleration and internal energetics/matter content
If protons accelerated in the jets, additional contribution from hadronic interactions \(pp \) or \(p\gamma \) could be observed. This process could lead to the production of \(\pi^0 \) mesons, which subsequently decay into two \(\gamma \) rays: \(\pi^0 \rightarrow \gamma \rightarrow 2\pi \). The \((\gamma, \gamma') \) signature provides insights into the nature of the acceleration process and the internal energy content of the system.

"Multimessenger" = multiwavelength approach

- Submitted proposals to trigger MAGIC and IceCube with first bright LOFAR transients, as well as mutual monitoring of known sources.
- Will directly address questions about particle acceleration and internal energetics/matter content.
Summary

- **LOFAR promises significant progress in understanding jet physics in accreting black holes** exploiting multi-\(\lambda \) and 8 orders of magnitude in mass/power scales!
 - **RSM**: helping understand radio-dominated states
 - **Low-\(\nu \) alone**: jet energetics, e\(^-\) distribution, prompt synchrotron
 - **LOFAR in combination with multiwavelength**: new constraints on bulk velocity, geometry, emission mechanisms
 - **LOFAR/\(\gamma \)-ray**: expanding spectrum on both ends, determination of hadronic component? Eventually in combination with direct neutrino detections?
 - **Spectral fitting**: constraints on geometry and plasma conditions very close to BH clues about jet formation
A few extra slides
Predictions for radio/X-ray correlations

For objects with the same mass:

\[L_R \propto L_X^m \]

\[m = \frac{17/12 - 2/3 \alpha_R}{q} \approx \frac{1.4}{q} \]

Synchrotron: \(q=2 \), ADAF/RIAF: \(q=2-2.3 \),
Radiatively efficient disk/corona: \(q=1 \) → problematic

Jet energetics: radiating particles

\[F_{\nu} \sim \nu^{-\frac{5}{2}} \]

\[\nu_{SSA}(B,\nu,n,r) \]

\[\sim \nu^{-(p-1)/2} \]
Jet energetics: radiating particles