Data Processing in the LOFAR Era

Jaap D. Bregman
Purpose of presentation

- Make clear the LOFAR postcorrelation processing problem
- Even more serious for Wide Field High Resolution SKA
- Indicate approach
- Start discussion on solutions and implementations
Introduction

The Problem
- AIPS can handle ~30 stations & ~300 freq on 1 laptop
- LOFAR has 90 stations & 50k freq so 1000 laptops needed
- Wide field imaging ~5° with 1000 km at 150 MHz
 - needs ~1000 facets of 1000²
 - Another factor 100 in laptops to give ~200 Tflops
- BlueGene/L ~34 Tflops @ ~1 Tb/s I+O

Solution
- Forget conventional facetting and cleaning
- Fast (U,V,W) facetting approach
- Geometric (U,V,W) projection onto array snapshot U,V-planes
- Projection of snapshot planes on tangent sky U,V-plane
- Solve stations gains for <10 strongest sources per snapshot
- Subtraction of <50 strongest sources per snapshot with spatial interpolated complex station gains
- Averaging of spectral channel images into continuum images removes any side and grating lobe
Overview

- LOFAR
- LOFAR correlation data rates & processing
- LOFAR imaging characteristics
- Wide Field Imaging basics
- Source Subtraction in U,V-domain
- Fast Quadrant Facetting
- LOFAR Facet processing requirements
- LOFAR source subtraction requirements
- Conclusions
LOFAR

- Stations in exponential shell distribution
 - 32 stations 486 baselines < 2 km
 - 57 stations 1596 baselines < 14 km
 - 77 stations 2926 baselines < 100 km
 - 90 stations 4005 baselines < 1000 km

- LBA 65 m stations 96 dipoles (10)30 – 80 MHz

- HBA 55 m stations 1536 dipoles 120 – 240 MHz
LOFAR correlation data rates & processing

From available 80/100 MHz receiver bands
- 32 MHz processed in 0.61 / 0.76 kHz channels
- Core stations: 24 beams @ 32M CS/s of 2*4 bit
- Remote stations: 8 beams @ 4M CS/s of 2*16 bit
- Other beam/bit/rate combinations possible

Aggregate input rate
- 90 st * 2 pol * 1 filed * 2*16 bit * 32M CS/s = 180 Gb/s
- 32 st * 2 pol * 24 field * 2*4 bit * 32M CS/s = 393 Gb/s

Output data rate
- 1 field * 4005 basel * 4 pol * 2*32 bit * 50k CS / 0.1 s = 512 Gb/s
- 24 field * 486 basel * 4 pol * 2*32 bit * 50k CS / 1 s = 149 Gb/s

Correlation power
- 1 field * 4005 inf * 4 pol * 50k CS * 5 Flop/CS * 0.61 kHz = 2.4 TFlop/s
- 24 field * 486 inf * 4 pol * 50k CS * 5 Flop/CS * 0.61 kHz = 7 TFlop/s

BG/L with ~34 TFlop/s and ~900 Gb/s is correlator output limited
- Process and average data before storage to disk
- ~25 Tflop/s available for post correlation processing
LOFAR Imaging Characteristics

- **High Resolution Wide field continuum imaging**
 - Spectral bins > 0.61 kHz
 - Time bins > 0.1 sec

- **Station main beam**
 - Amplitude Varies while tracking a point in the sky
 - Elliptical width varies with zenith angle
 - Hardly influenced by complex gain of dipoles

- **Station side lobes**
 - -17 dB for randomized expo shell LBA
 - -25 / -60 dB for tapered regular HBA
 - Rotation averaging ~20 dB lower to bring gratings <-20 dB
 - 10^{-2} element complex gain errors give relative errors in all lobes of $\sim 10^{-3}$ divided by the voltage pattern
 - Only few sources in all sky side lobes need to be solved and subtracted per snapshot of 10 sec & 10 MHz

- **Bandwidth smearing for continuum imaging already effective in core**
Wide Field Imaging Basics

- For a planar array we have the (F)FT between U,V and I,m

- For a quasi-planar array
 - project (U,V,W) points for direction θ_0 on horizontal U,V-plane
 - FT valid for radius $\Delta \theta$ around θ_0 with $\Delta \theta = (\Delta \phi / \pi W)^{1/2}$
 - And max tolerated phase error $\Delta \phi \sim 0.03$
 - Earth curvature for distance +/-500 km $Z = -20$ km
 - For HBA beam at 150 MHz
 - $\Delta \theta = 10^{-3}$ and resolution $\delta \theta = \lambda / B = 2 \times 10^{-6}$ for 2 pixels
 - beam $\theta_{\text{fwhm}} = 0.044$ so 500 facets of $\sim 2000^2$
 - For LBA beam at 40 MHz
 - $\Delta \theta = 2 \times 10^{-3}$ but resolution 8×10^{-6}
 - beam $\theta_{\text{fwhm}} = 0.14$ so 1200 facets of $\sim 1000^2$

- Projection corrected snapshot images can be combined by projection of each horizontal U,V-snapshot-plane on sky tangent plane

- Array beam is average of array snapshot beams

- Station beam is also average of station snapshot beams
Source Subtraction in U,V-domain

- Exact relation from sky brightness to \((U,V,W)\) visibility by Measurement Equation
- Inversion by (F)FT only to image facet of limited size limited on sky
- Separate projection corrected \((U,V)\) facet for each \((l,m)\) image facet
- Subtract exactly all sources in sky that would give synthesized side lobes above noise in snapshot image
- \(~100\) sources in main beam \(>1\sigma\) per baseline per 10 MHz & 10 s
- These have also side lobes stronger than \(1\sigma\) per snapshot
- No more than \(~N_{st}/2\) \(<16\) independent complex gains can be solved per station is enough for ionospheric phase screen solution
Fast Quadrant Facetting

- For each (U,V,W) facet we need to phase shift all visibilities to centre of corresponding (l,m) facet

- The (U,V,W) facets need less spectral & temporal resolution and can be averaged after phase shifting

- We have 200M visibilities for 200k snapshots in ~12 hour

- We need ~500 facets so time and frequency averaging factor of ~22 from 0.1 to 2.2 sec and from 0.6 to 13 kHz

- Define 4 (l,m) quadrant facets and 4 corresponding (U,V,W) facets
 - Phase centre all (U,V,W) data for each of the 4 (l,m) quadrant centres
 - Average 2 time slices and 2 frequency channels
 - Each interferometer gets 2 station phase corrections
 - Total amount of data remains the same
LOFAR Facet Processing Requirements

- **(U,V,W) facet quadrant processing**
 - 4005 inf * 4 pol * 50k CS * 4 quad * 2 stations * 5 Flop/CS / 0.1 s = 320 GFlop/s

- **Repeat process 5 times for 1.6 TFlop/s which is comparable to correlation**
 - and get 1024 horizontal (U,V,W) facets
 - with 4005 baselines averaged over 3.2 s and 19 kHz
 - FFT trick saves factor 32 in processing

- **After 20,000 s we have**
 - 6250 horizontal facets * 4005 baselines to grid into a 2000*2000 image
 - i.e. Complete U,V filling for each 19 kHz bin

- **Projection correction to horizontal (U,V) plane and then 6250 horizontal facets to a tangent sky plane takes less than 1 TFlop/s**

- **Self calibration involves only the facets of the 10 strongest sources**
LOFAR Source Subtraction Requirements

- Each horizontal U,V,W-visibility needs to be corrected for ~100 sources

- We need two station phase corrections per object per baseline

- Processing is comparable to the shift correction
 - \[\text{4005 inf} \times 4 \text{ pol} \times 50k \text{ CS} \times 2 \text{ stations} \times 5 \text{ Flop/CS} / 0.1 \text{ s} = 80 \text{ GFlop/s} \]

- For sources outside the facet we need time and bandwidth decorrelation corrections
 - Baseline dependent
 - Factor 2-10 more expensive than phase correction only

- For 100 sources we need 16 - 80 Tflop/s
Conclusions

- Forget conventional facetting
 - Geometric (U,V,W) projection onto array snapshot U,V-planes allows relatively large image facets
 - High Resolution Wide Field LOFAR needs ~1000 facets
 - Fast Quadrant Facetting can be handled for the 1000 km
 - Resulting frequency bin width ~20 kHz and 3 sec snapshot facets
 - After 12 h complete U,V sampling
 - Processing power comparable with correlation power

- Forget conventional cleaning
 - No more than ~100 sources need to be subtracted in U,V,W-domain
 - Processing power only available for less sources at highest resolution
 - Selfcalibration on ~10 strongest sources in beam can be handled

- Flexible use of General Purpose processing platform for correlation and calibration
 - At 32 MHz bandwidth the correlation power is 10% of the post correlation
 - Valid approach for SKA at 320 MHz and more stations

- Averaging over more bins reduces side lobes to invisible levels
Suggestions ?