Testing external transient buffer boards triggers from the 100m Effelsberg telescope

Sander Ter Veen

Leon Houben, Jörg Rachen, Laura Spitler, David Champion Heino Falcke, Michael Kramer, Emilio Enriquez

Responsive telescope

- LOFAR is a digital telescope
- Flexible
- Use LOFAR to follow-up transients

My favourite transient: Fast Radio Bursts

- Mysterious highly dispersed pulses
- Extragalactic origin?
- Only seen at 1.4 GHz and 800 MHz
 - What is their low frequency emission?
 - Where do they come from?
- No LOFAR detections so far
- Trigger LOFAR on a bursts seen at higher frequencies
- At least one repeating FRB

Transient Buffer Board

- Memory for each LOFAR dipole / tile
- Frozen and read-out on an interesting signal
- All-sky capability
- Full timeresolution
- Dual polarisation

Commissioning test: Transient Buffer Boards triggered from Effelsberg detection

Effelsberg 100m telescope High freq detection **LOFAR**

Low frequency observation Localisation

Delay times [s] from 1.3 GHz

DM	250 MHz	190 MHz	150 MHz	110 MHz
141	9	15.9	25.7	48.2
500	32	56	91	170
1000	64	112	182	340

Bandwidth [MHz] in 5 seconds buffer

DM	250 MHz	190 MHz	150 MHz	110 MHz
141	40+	25	15	6
500	17	8	4	2
1000	9	4	2	1

- Running Heimdall, same software that detected Parkes FRBs
- Early test stages
- Manual verification of triggers
- Testing on B2111+46
- DM=141 pc cm⁻³

- Running Heimdall, same software that detected Parkes FRBs
- Early test stages
- Manual verification of triggers

VOEvent

- Communication between observatories for transient follow-up
- XML message with default and custom parameters
- Send event time, DM, SNR, observing frequencies and errors
- Position and beamsize
- Determine stop time based on these parameters
- LOFAR broker subscribed to Effelsberg broker

- Calculate time the burst would arrive at LOFAR
- Determine if position is within tilebeam
- Send stop (freeze) command to bufferboards
- Delay time total: 27-36 seconds
 - Calculation Effelsberg (10-12 seconds)
 - Manual verification (20-25 seconds)
 - Communication to LOFAR (10 milliseconds)
 - LOFAR trigger (10 milliseconds)
 - Record time: 16 seconds

- Simultaneous beam formed observations with LOFAR
- Use LOFAR observation to check If pulse is visible
- Check offset between expected / actual time of arrival
 - Offset of 0.1 seconds
 - Time stamp at Effelsberg needs to be verified

Data taken for two events
TBB data analysis ongoing
From beamformed observation SNR
too low for single station detection

- Data analysis ongoing
- Example from B0329+54

Superterp only image

Conclusions

- Taken TBB data triggered by the Effelsberg telescope from a pulsar pulse
- First time LOFAR acts as a responsive telescope
- Same pulse detected by LOFAR and Effelsberg
- TBB analysis ongoing